Deep features fusion for user authentication based on human activity

Author:

Wandji Piugie Yris Brice12ORCID,Charrier Christophe2,Di Manno Joël1,Rosenberger Christophe2

Affiliation:

1. FIME SAS Caen France

2. Normandie University UNICAEN ENSICAEN CNRS GREYC Caen France

Abstract

AbstractThe exponential growth in the use of smartphones means that users must constantly be concerned about the security and privacy of mobile data because the loss of a mobile device could compromise personal information. To address this issue, continuous authentication systems have been proposed, in which users are monitored transparently after initial access to the smartphone. In this study, the authors address the problem of user authentication by considering human activities as behavioural biometric information. The authors convert the behavioural biometric data (considered as time series) into a 2D colour image. This transformation process keeps all the characteristics of the behavioural signal. Time series does not receive any filtering operation with this transformation, and the method is reversible. This signal‐to‐image transformation allows us to use the 2D convolutional networks to build efficient deep feature vectors. This allows them to compare these feature vectors to the reference template vectors to compute the performance metric. The authors evaluate the performance of the authentication system in terms of Equal Error Rate on a benchmark University of Californy, Irvine Human Activity Recognition dataset, and they show the efficiency of the approach.

Funder

Association Nationale de la Recherche et de la Technologie

Région Normandie

Publisher

Institution of Engineering and Technology (IET)

Subject

Computer Vision and Pattern Recognition,Signal Processing,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Network-based System of Mechanical Vibration Fault Diagnosis;Scalable Computing: Practice and Experience;2024-04-12

2. Analysis of Computational Model for Detection and Recognition of Human Activity Using Deep Learning;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3