Affiliation:
1. Computer Vision Lab Faculty of Computer and Information Science University of Ljubljana Ljubljana Slovenia
2. Laboratory for Machine Intelligence Faculty of Electrical Engineering University of Ljubljana Ljubljana Slovenia
Abstract
AbstractEar images have been shown to be a reliable modality for biometric recognition with desirable characteristics, such as high universality, distinctiveness, measurability and permanence. While a considerable amount of research has been directed towards ear recognition techniques, the problem of ear alignment is still under‐explored in the open literature. Nonetheless, accurate alignment of ear images, especially in unconstrained acquisition scenarios, where the ear appearance is expected to vary widely due to pose and view point variations, is critical for the performance of all downstream tasks, including ear recognition. Here, the authors address this problem and present a framework for ear alignment that relies on a two‐step procedure: (i) automatic landmark detection and (ii) fiducial point alignment. For the first (landmark detection) step, the authors implement and train a Two‐Stack Hourglass model (2‐SHGNet) capable of accurately predicting 55 landmarks on diverse ear images captured in uncontrolled conditions. For the second (alignment) step, the authors use the Random Sample Consensus (RANSAC) algorithm to align the estimated landmark/fiducial points with a pre‐defined ear shape (i.e. a collection of average ear landmark positions). The authors evaluate the proposed framework in comprehensive experiments on the AWEx and ITWE datasets and show that the 2‐SHGNet model leads to more accurate landmark predictions than competing state‐of‐the‐art models from the literature. Furthermore, the authors also demonstrate that the alignment step significantly improves recognition accuracy with ear images from unconstrained environments compared to unaligned imagery.
Funder
Javna Agencija za Raziskovalno Dejavnost RS
Publisher
Institution of Engineering and Technology (IET)
Subject
Computer Vision and Pattern Recognition,Signal Processing,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Unconstrained Ear Recognition Challenge 2023: Maximizing Performance and Minimizing Bias*;2023 IEEE International Joint Conference on Biometrics (IJCB);2023-09-25
2. Improving Ear Recognition with Super-resolution;2023 30th International Conference on Systems, Signals and Image Processing (IWSSIP);2023-06-27