Adversarial liveness detector: Leveraging adversarial perturbations in fingerprint liveness detection

Author:

Galli Antonio1ORCID,Gravina Michela1ORCID,Marrone Stefano1ORCID,Mattiello Domenico1,Sansone Carlo1ORCID

Affiliation:

1. Department of Electrical and Information Technology (DIETI) University of Naples Federico II Naples Italy

Abstract

AbstractThe widespread use of fingerprint authentication systems (FASs) in consumer electronics opens for the development of advanced presentation attacks, that is, procedures designed to bypass a FAS using a forged fingerprint. As a consequence, FAS are often equipped with a fingerprint presentation attack detection (FPAD) module, to recognise live fingerprints from fake replicas. In this work, a novel FPAD approach based on Convolutional Neural Networks (CNNs) and on an ad hoc adversarial data augmentation strategy designed to iteratively increase the considered detector robustness is proposed. In particular, the concept of adversarial fingerprint, that is, fake fingerprints disguised by using ad hoc fingerprint adversarial perturbation algorithms was leveraged to help the detector focus only on salient portions of the fingerprints. The procedure can be adapted to different CNNs, adversarial fingerprint algorithms and fingerprint scanners, making the proposed approach versatile and easily customisable todifferent working scenarios. To test the effectiveness of the proposed approach, the authors took part in the LivDet 2021 competition, an international challenge gathering experts to compete on fingerprint liveness detection under different scanners and fake replica generation approach, achieving first place out of 23 participants in the ‘Liveness Detection in Action track’.

Publisher

Institution of Engineering and Technology (IET)

Subject

Computer Vision and Pattern Recognition,Signal Processing,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3