A mm‐wave LNA employing current re‐use and non‐linearity cancellation in 28 nm CMOS for automotive RADAR and 6G receivers

Author:

Kalita Ellora1ORCID,Khan Barha1ORCID,Rahman Mustafijur1ORCID

Affiliation:

1. Department of Electrical Engineering Indian Institute of Technology Delhi New Delhi India

Abstract

AbstractThis letter reports an 85 GHz low noise amplifier (LNA) employing derivative superposition based non‐linearity cancellation and a current re‐use topology. The LNA employs a two‐stage stacked architecture, each featuring neutralized differential pairs utilizing the same DC current. In derivative superposition, an auxiliary branch consisting of neutralized differential pairs cells is added in the LNA in parallel to stage 1 to ensure non‐linearity cancellation. Layout‐based capacitive neutralization is implemented to improve GMAX, resulting in simplified routing, reduced parasitics, and a more compact layout. The proposed LNA is fabricated in TSMC 28 nm CMOS process and achieves a peak gain of 8.4 dB at 84.2 GHz with a measured 3 dB bandwidth () from 79.4 to 92 GHz. The minimum measured noise figure is 12.8 dB. The LNA draws 34 mA of DC current from a 1.2 V supply. The highly linear LNA with IIP3 +6.5 dBm is tailored for automotive RADAR and 6G receivers.

Funder

Science and Engineering Research Board

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3