Empowering lightweight video transformer via the kernel learning

Author:

Liu Xiaoxi1,Liu Ju1ORCID,Gu Lingchen2

Affiliation:

1. School of Information Science and Engineering Shandong University Qingdao China

2. School of Information Science and Engineering Shandong Normal University Jinan China

Abstract

AbstractVideo transformers achieve superior performance in video recognition. Despite the recent advances in video transformers, they still require substantial computation and memory resources. To cater for the computation efficiency, a kernel‐based video transformer is proposed, including: (1) a new formulation of the video transformer via the kernel learning is presented to better understand the individual components of it; (2) a lightweight Kernel‐based spatial–temporal multi‐head self‐attention block is explored to learn the compact joint spatial–temporal video feature; (3) an adaptive‐score position embedding method is conducted to promote the flexibility of video transformer. Experimental results on several action recognition datasets demonstrate the effectiveness of the proposed method. Only pretrained on ImageNet‐1K, the method achieves the preferable balance between computation and accuracy, while requiring 7 fewer parameters and 13 fewer floating point operations than other comparable methods.

Funder

Key Technology Research and Development Program of Shandong Province

Natural Science Foundation of Shandong Province

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3