Stereo sample generation‐based domain generalization network for stereo matching

Author:

Xu Liying1ORCID,Zhu Jie1,Peng Bo1,Liu Bingzheng1,Zhang Zhe1,Lei Jianjun1

Affiliation:

1. School of Electrical and Information Engineering Tianjin University Tianjin China

Abstract

AbstractRecently, deep learning‐based stereo matching has achieved great success. However, models trained on the source domain dataset encounter substantial performance degradation when directly tested on an unseen target domain dataset because of neglecting the generalization to out‐of‐distribution (OOD) stereo samples. This paper proposes a stereo sample generation‐based domain generalization network (SGDG‐Net) for stereo matching. Specifically, to expand the distribution span of training samples, OOD stereo samples are generated to assist training. To effectively generate OOD left samples, a style transfer‐based generation mechanism is proposed to transmit perturbations to the source left samples. In addition, to generate the OOD right samples, a disparity‐assisted generation strategy is proposed by using disparity map labels as auxiliary information. Experimental results demonstrate that the proposed SGDG‐Net produces remarkable results on four benchmark datasets.

Funder

National Key Research and Development Program of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3