Applying novel self‐supervised learning for early detection of retinopathy of prematurity

Author:

Wang Dongmei1ORCID,Qiao Wanli1,Guo Wei2,Cai Yuansong1

Affiliation:

1. School of Electrical and Electronic Engineering Changchun University of Technology Changchun China

2. Department of Ophthalmology and Otorhinolaryngology Jilin Women and Children Health Hospital Changchun China

Abstract

AbstractRetinopathy of prematurity (ROP) mainly occurs in premature infants with low birth weight, and it is the leading cause of childhood blindness. Early and accurate ROP diagnosis is imperative for appropriate treatment. However, less research concentrates on early‐stage ROP diagnosis based on limited‐labelled images in an imbalanced dataset. To address the dilemma, this study proposed a novel self‐supervised network, MOCO‐MIM, for early ROP grading. The proposed classification network was evaluated on a total of 553 labelled fundus images from 89 preterm infants. The trained network achieved a test accuracy of 98.29% and an AUC score of 97.6% for three stages of grading. The adopted method is verified that the proposed method can be detected early stages of ROP more efficiently and grade the severity more accurately based on limited‐labelled fundus images, which is superior to the existing state‐of‐the‐art methods.

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3