Real‐time driving style classification based on short‐term observations

Author:

Zheng Xinhu1ORCID,Yang Pengtao2,Duan Dongliang3ORCID,Cheng Xiang2ORCID,Yang Liuqing1

Affiliation:

1. Department of Electrical and Computer Engineering University of Minnesota Minneapolis Minnesota USA

2. State Key Laboratory of Advanced Optical Communication Systems and Networks School of Electronics Peking University Beijing China

3. Department of Electrical and Computer Engineering University of Wyoming Laramie Wyoming USA

Funder

National Natural Science Foundation of China

National Science Foundation

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Science Applications

Reference50 articles.

1. Vehicle tracking using surveillance with multimodal data fusion;Zhang Y.;IEEE Trans. Intell. Transp. Syst.,2019

2. Huang J. Tan H.S.:Vehicle future trajectory prediction with a dgps/ins‐based positioning system. in American Control Conference 2006 (2006)

3. A New Vehicle Motion Model for Improved Predictions and Situation Assessment

4. Sensor Fusion for Predicting Vehicles' Path for Collision Avoidance Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Lane Change Style Recognition through Analysis of Latent Driving Behavior;2024 2nd International Conference on Mechatronics, IoT and Industrial Informatics (ICMIII);2024-06-12

2. Machine Learning for Real-Time Fuel Consumption Prediction and Driving Profile Classification Based on ECU Data;IEEE Access;2024

3. Driving Style Classification Using Deep Temporal Clustering with Enhanced Explainability;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

4. Driving Profile Analysis Using Machine Learning Techniques and ECU Data;2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE);2023-06-19

5. Predicting Driving License Applicant’s Performance for Car Reverse Test System;Business Intelligence;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3