Combination of moment‐matching, Cholesky and clustering methods to approximate discrete probability distribution of multiple wind farms
Author:
Affiliation:
1. School of Electrical EngineeringGuangxi UniversityNanning530004People's Republic of China
2. Guangxi Key Laboratory of Power System Optimization and Energy TechnologyGuangxi UniversityNanning530004People's Republic of China
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Renewable Energy, Sustainability and the Environment
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-rpg.2015.0568
Reference40 articles.
1. Indirect coordination of electricity demand for balancing wind power;Gafurov T.;IET Renew. Power Gener.,2014
2. A stochastic optimization formulation of unit commitment with reliability constraints;Xiong P.;IEEE Trans. Smart Grid,2013
3. Demand response scheduling by stochastic SCUC;Parvania M.;IEEE Trans. Smart Grid,2010
4. A convex model of risk‐based unit commitment for day‐ahead market clearing considering wind power uncertainty;Zhang N.;IEEE Trans. Power Syst.,2015
5. Minimum energy storage for power system with high wind power penetration using p‐efficient point theory;Li J.H.;Sci. China Inf. Sci.,2014
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Two-Stage Robust Optimal Scheduling Considering Renewable Power Correlation;2024 7th Asia Conference on Energy and Electrical Engineering (ACEEE);2024-07-20
2. Stable optimisation-based scenario generation via game theoretic approach;Computers & Chemical Engineering;2024-06
3. An Efficient Data-Driven Conditional Joint Wind Power Scenario Generation for Day-Ahead Power System Operations Planning;IEEE Transactions on Power Systems;2024
4. Data-Driven Approaches for Generating Probabilistic Short-Term Renewable Energy Scenarios;2024
5. Time-coupled day-ahead wind power scenario generation: A combined regular vine copula and variance reduction method;Energy;2023-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3