FlowMFD: Characterisation and classification of tor traffic using MFD chromatographic features and spatial–temporal modelling

Author:

He Liukun1,Wang Liangmin2,Cheng Keyang1,Xu Yifan2

Affiliation:

1. School of Computer Science and Communication Engineering Jiangsu University Zhenjiang China

2. School of Cyber Science and Engineering Southeast University Nanjing China

Abstract

AbstractTor traffic tracking is valuable for combating cybercrime as it provides insights into the traffic active on the Tor network. Tor‐based application traffic classification is one of the tracking methods, which can effectively classify Tor application services. However, it is not effective in classifying specific applications due to more complicated traffic patterns in the spatial and temporal dimensions. As a solution, the authors propose FlowMFD, a novel Tor‐based application traffic classification approach using amount‐frequency‐direction (MFD) chromatographic features and spatial‐temporal modelling. Expressly, FlowMFD mines the interaction pattern between Tor applications and servers by analysing the time series features (TSFs) of different size packets. Then MFD chromatographic features (MFDCF) are designed to represent the pattern. Those features integrate multiple low‐dimensional TSFs into a single plane and retain most pattern information. In addition, FlowMFD utilises a cascaded model with a two‐dimensional convolutional neural network (2D‐CNN) and a bidirectional gated recurrent unit to capture spatial‐temporal dependencies between MFDCF. The authors evaluate FlowMFD under the public ISCXTor2016 dataset and the self‐collected dataset, where we achieve an accuracy of 92.1% (4.2%↑) and 88.3% (4.5%↑), respectively, outperforming state‐of‐the‐art comparison methods.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Computer Networks and Communications,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An anonymous user discovery algorithm based on the Naive Bayes algorithm;2023 IEEE 3rd International Conference on Computer Systems (ICCS);2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3