An effective electrocardiogram segments denoising method combined with ensemble empirical mode decomposition, empirical mode decomposition, and wavelet packet

Author:

Yue Yaru1ORCID,Chen Chengdong2,Wu Xiaoyuan2,Zhou Xiaoguang1

Affiliation:

1. School of Modern Post (School of Automation) Beijing University of Posts and Telecommunications (BUPT) Beijing China

2. School of Economics and Management Minjiang University Fujian China

Abstract

AbstractElectrocardiogram (ECG) is the most extensively applied diagnostic approach for heart diseases. However, an ECG signal is a weak bioelectrical signal and is easily disturbed by baseline wander, powerline interference, and muscle artefacts, which make detection of heart diseases more difficult. Therefore, it is very important to denoise the contaminated ECG signal in practical application. In this article, an effective ECG segments denoising method combining the ensemble empirical mode decomposition (EEMD), empirical mode decomposition (EMD), and wavelet packet (WP) is designed. The ECG signal is decomposed using the EEMD for the first time, and then the highest frequency component is decomposed by the EMD for the second time, and the high frequency components obtained from the second time are decomposed and reconstructed by the WP for the third time. Finally, the processed signal components are fused to obtain the denoised ECG signal. Furthermore, the signal‐to‐noise ratio (SNR), mean square error (MSE), root mean square error (RMSE), and normalised cross correlation coefficient (R) are used to evaluate the noise reduction algorithm. The mean SNR, MSE, RMSE, and R are 5.7427, 0.0071, 0.0551, and 0.9050 in the China Physiological Signal Challenge 2018 dataset. Compared with others denoising methods, the experimental results not only exhibit that the SNR of the ECG signal is effectively improved, but also show that the details of the ECG signal are fully retained, laying a solid foundation for the automatic detection of ECG segments.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3