Attention‐based sensor fusion for emotion recognition from human motion by combining convolutional neural network and weighted kernel support vector machine and using inertial measurement unit signals

Author:

Zhao Yan1,Guo Ming1ORCID,Sun Xuehan2ORCID,Chen Xiangyong1,Zhao Feng1

Affiliation:

1. School of Automation and Electrical Engineering Linyi University Linyi Shandong China

2. School of Physical Education and Health Linyi University Linyi Shandong China

Abstract

AbstractThe remarkable development of human–computer interactions has created an urgent need for machines to be able to recognise human emotions. Human motions play a key role in emphasising and conveying emotions to meet the complexity of daily application scenarios, such as medical rehabilitation and social education. Therefore, this paper aims to explore hidden emotional states from human motions. Accordingly, we proposed a novel approach for emotion recognition using multiple inertial measurement unit (IMU) sensors worn on different body parts. First, the mapping relationship between emotion and human motion was established through fuzzy comprehensive evaluation, and data were collected for six emotional states: sleepy, bored, excited, tense, angry, and distressed. Second, the preprocessed data were used as input in a lightweight convolutional neural network to extract discriminative features. Third, an attention‐based sensor fusion module was developed to obtain the importance scores of each IMU sensor for generating a fused feature representation. In the recognition phase, we constructed a weighted kernel support vector machine (SVM) model with an auxiliary fuzzy function to improve the weight calculation method of kernel functions in a multiple kernel SVM. Finally, the results obtained are compared with those of similar state‐of‐the‐art studies, the proposed method showed a higher accuracy (99.02%) for the six emotional states mentioned above. These findings may promote the development of social robots with non‐verbal emotional communication capabilities.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3