Malware detection method based on the control‐flow construct feature of software

Author:

Zhao Zongqu12,Wang Junfeng1,Bai Jinrong1

Affiliation:

1. College of Computer ScienceSichuan UniversityChengduPeople's Republic of China

2. School of Computer Science and TechnologyHenan Polytechnic UniversityJiaozuoPeople's Republic of China

Funder

National Natural Science Foundation of China

Program for New Century Excellent Talents in University

Publisher

Institution of Engineering and Technology (IET)

Subject

Computer Networks and Communications,Information Systems,Software

Reference22 articles.

1. Deng P.S. Wang J.H. Shieh W.G. Yen C.P. Tung C.T.: ‘Intelligent automatic malicious code signatures extraction’.Proc. IEEE 37th Annual 2003 Int. Carnahan Conf. 2003 pp.600–603

2. Behavioral detection of malware: from a survey towards an established taxonomy;Jacob G.;J. Comput. Virol.,2008

3. Kephart J.O. Arnold W.C.: ‘Automatic extraction of computer virus signatures’.Proc. Fourth Virus Bulletin Int. Conf. 1994 pp.178–184

4. Detection of malicious code by applying machine learning classifiers on static features: a state‐of‐the‐art survey;Shabtai A.;Inf. Sec. Tech. Rep.,2009

5. Opcodes as predictor for malware

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ransomware Detection Model Based on Adaptive Graph Neural Network Learning;Applied Sciences;2024-05-27

2. A survey of strategy-driven evasion methods for PE malware: Transformation, concealment, and attack;Computers & Security;2024-02

3. Real-Time Ransomware Detection Method Based on TextGCN;2023 6th International Conference on Artificial Intelligence and Big Data (ICAIBD);2023-05-26

4. Digital Forensics as Advanced Ransomware Pre-Attack Detection Algorithm for Endpoint Data Protection;Security and Communication Networks;2022-07-06

5. Graph-Based Malware Detection Using Opcode Sequences;2021 9th International Symposium on Digital Forensics and Security (ISDFS);2021-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3