RDMS: Reverse distillation with multiple students of different scales for anomaly detection

Author:

Chen Ziheng1ORCID,Lyu Chenzhi1,Zhang Lei1,Li ShaoKang1,Xia Bin1

Affiliation:

1. Institute of Automotive Engineers Hubei University of Automotive Technology Shiyan Hubei China

Abstract

AbstractUnsupervised anomaly detection, often approached as a one‐class classification problem, is a critical task in computer vision. Knowledge distillation has emerged as a promising technique for enhancing anomaly detection accuracy, especially with the advent of reverse distillation networks that employ encoder–decoder architectures. This study introduces a novel reverse knowledge distillation framework known as RDMS, which incorporates a pretrained teacher encoding module, a multi‐level feature fusion connection module, and a student decoding module consisting of three independent decoders. RDMS is designed to distill distinct features from the teacher encoder, mitigating overfitting issues associated with similar or identical teacher–student structures. The model achieves an average of 99.3 image‐level AUROC and 98.34 pixel‐level AUROC on the MVTec‐AD dataset and demonstrates state‐of‐the‐art performance on the more challenging BTAD dataset. The RDMS model's high accuracy in anomaly detection and localization underscores the potential of multi‐student reverse distillation to advance unsupervised anomaly detection capabilities. The source code is available at https://github.com/zihengchen777/RDMS

Funder

Natural Science Foundation of Hubei Province

Publisher

Institution of Engineering and Technology (IET)

Reference48 articles.

1. Ruff L. Vandermeulen R. Goernitz N. Deecke L. Siddiqui S.A. Binder A. Müller E. Kloft M.:Deep one‐class classification. In:International conference on machine learning pp.4393–4402.Microtome Publishing Brookline MA(2018)

2. An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical Features

3. Anomaly-GAN: A data augmentation method for train surface anomaly detection

4. Dim2Clear network for infrared small target detection;Zhang M.;IEEE Trans. Geosci. Remote Sens.,2023

5. Facial Expression Recognition Using a Semantic-Based Bottleneck Attention Module

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3