SEY‐Net: Semantic edge Y‐shaped network for pancreas segmentation

Author:

Zhou Bangyuan1ORCID,Xin Guojiang1,Liang Hao2,Ding Changsong1

Affiliation:

1. School of Informatics Hunan University of Chinese Medicine Changsha China

2. School of Chinese Medicine Hunan University of Chinese Medicine Changsha China

Abstract

AbstractPancreas segmentation has great significance in computer‐aided diagnosis of pancreatic diseases. The small size of the pancreas, high variability in shape, and blurred edges make the task of pancreas segmentation challenging. A new model called SEY‐Net is proposed to solve the above problems, which is a one‐stage model with multi‐inputs. SEY‐Net is composed of three main components. Firstly, the edge information extraction (EIE) module is designed to improve the segmentation accuracy of the pancreas boundary. Then, the SE_ResNet50 is selected as the encoder's backbone to fit the size of the pancreas. Finally, the dual cross‐attention is integrated into the skip connection to better focus on the variable shape of the pancreas. The experimental results shows that the proposed method has better performance and outperforms the other existing state‐of‐the‐art pancreas segmentation methods.

Funder

Natural Science Foundation of Hunan Province

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3