Affiliation:
1. Electrical Engineering Department National Institute of Technology Durgapur Durgapur West Bengal India
2. Department of Surgical Sciences Neuroradiology Uppsala University Uppsala Sweden
3. Department of Information Technology Centre for Image Analysis Uppsala University Uppsala Sweden
Abstract
AbstractPrecise localization and volumetric segmentation of glioblastoma before and after surgery are crucial for various clinical purposes, including post‐surgery treatment planning, monitoring tumour recurrence, and creating radiotherapy maps. Manual delineation is time‐consuming and prone to errors, hence the adoption of automated 3D quantification methods using deep learning algorithms from MRI scans in recent times. However, automated segmentation often leads to over‐segmentation or under‐segmentation of tumour regions. Introducing an interactive deep‐learning tool would empower radiologists to rectify these inaccuracies by adjusting the over‐segmented and under‐segmented voxels as needed. This paper proposes a network named Atten‐SEVNETR, that has a combined architecture of vision transformers and convolutional neural networks (CNN). This hybrid architecture helps to learn the input volume representation in sequences and focuses on the global multi‐scale information. An interactive graphical user interface is also developed where the initial 3D segmentation of glioblastoma can be interactively corrected to remove falsely detected spurious tumour regions. Atten‐SEVNETR is trained on BraTS training dataset and tested on BraTS validation dataset and on Uppsala University post‐operative glioblastoma dataset. The methodology outperformed state‐of‐the‐art networks like nnFormer, SwinUNet, and SwinUNETR. The mean dice score achieved is 0.7302, and the mean Hausdorff distance‐95 got is 7.78 mm for the Uppsala University dataset.
Publisher
Institution of Engineering and Technology (IET)