Atten‐SEVNETR for volumetric segmentation of glioblastoma and interactive refinement to limit over‐segmentation

Author:

Kundu Swagata1ORCID,Toumpanakis Dimitrios2,Wikstrom Johan2,Strand Robin3ORCID,Dhara Ashis Kumar1

Affiliation:

1. Electrical Engineering Department National Institute of Technology Durgapur Durgapur West Bengal India

2. Department of Surgical Sciences Neuroradiology Uppsala University Uppsala Sweden

3. Department of Information Technology Centre for Image Analysis Uppsala University Uppsala Sweden

Abstract

AbstractPrecise localization and volumetric segmentation of glioblastoma before and after surgery are crucial for various clinical purposes, including post‐surgery treatment planning, monitoring tumour recurrence, and creating radiotherapy maps. Manual delineation is time‐consuming and prone to errors, hence the adoption of automated 3D quantification methods using deep learning algorithms from MRI scans in recent times. However, automated segmentation often leads to over‐segmentation or under‐segmentation of tumour regions. Introducing an interactive deep‐learning tool would empower radiologists to rectify these inaccuracies by adjusting the over‐segmented and under‐segmented voxels as needed. This paper proposes a network named Atten‐SEVNETR, that has a combined architecture of vision transformers and convolutional neural networks (CNN). This hybrid architecture helps to learn the input volume representation in sequences and focuses on the global multi‐scale information. An interactive graphical user interface is also developed where the initial 3D segmentation of glioblastoma can be interactively corrected to remove falsely detected spurious tumour regions. Atten‐SEVNETR is trained on BraTS training dataset and tested on BraTS validation dataset and on Uppsala University post‐operative glioblastoma dataset. The methodology outperformed state‐of‐the‐art networks like nnFormer, SwinUNet, and SwinUNETR. The mean dice score achieved is 0.7302, and the mean Hausdorff distance‐95 got is 7.78 mm for the Uppsala University dataset.

Publisher

Institution of Engineering and Technology (IET)

Reference57 articles.

1. Baid U. et al.:The RSNA‐ASNR‐MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv:2107.02314 (2021)

2. Patel J.B. Chang K. Hoebel K. Gidwani M. Arun N.T. Gupta S. et al.:Segmentation survival prediction and uncertainty estimation of gliomas from multimodal 3D MRI using selective kernel networks. In:Brainlesion: Glioma Multiple Sclerosis Stroke and Traumatic Brain Injuries ‐ 6th International Workshop BrainLes 2020 pp.228–240.Springer Cham(2020)

3. Dhara A.K. Arvids E. Fahlström M. Wikström J. Larsson E.M. Strand R.:Interactive segmentation of glioblastoma for post‐surgical treatment follow‐up. In:2018 24th International Conference on Pattern Recognition (ICPR) pp.1199–1204.IEEE Piscataway NJ(2018)

4. Segmentation of glioblastomas in early post‐operative multi‐modal MRI with deep neural networks;Holden H.R.;Sci. Rep.,2023

5. A survey of existing leaf disease techniques using artificial neural network;Khajuria R.;Int. J. Comput. Trends Technol.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3