3D layout estimation of general rooms based on ordinal semantic segmentation

Author:

Yao Hui1ORCID,Miao Jun1,Zhang Guoxiang2,Chu Jun1

Affiliation:

1. Institute of Computer Vision Nanchang Hangkong University Nanchang Jiangxi China

2. University of California Merced California USA

Abstract

AbstractRoom layout estimation aims to predict the location and range of layout planes of interior spaces. Previous works treat each layout plane as an independent individual without considering the ordinal relation between walls, resulting the loss of the wall planes and the lack of integrity. This paper proposes a novel two‐branch neural networks model to estimate 3D layouts of cuboid and non‐cuboid room types. The model embeds the ordinal relation between layout planes into the layout segmentation branch through an proposed ordinal classification loss function, and outputs both pixel‐level layout segmentation maps and layout plane parameter maps. Then, the instance‐level plane parameters of each layout plane are determined by using an instance‐aware pooling layer. Finally, the sharpness of layout edges of the 2D layout semantic segmentation map is optimized by using an improved depth map intersection algorithm. Furthermore, we annotate a large‐scale 3D room layout estimation dataset, InteriorNet‐Layout, to obtain a steady model. Experiments on synthesized real‐world datasets show that the proposed method achieves faster calculation while maintaining high accuracy. Code is available at https://github.com/Hui‐Yao/3D‐ordinal‐layout‐estimation.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Computer Vision and Pattern Recognition,Software

Reference38 articles.

1. Nie Y. et al.:Total3dunderstanding: joint layout object pose and mesh reconstruction for indoor scenes from a single image. In:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition pp.55–64(2020)

2. Learning to navigate in complex environments;Mirowski P.;arXiv preprint arXiv:1611.03673,2016

3. Deep image homography estimation;Detone D.;arXiv preprint arXiv:1606.03798,2016

4. Hedau V. Hoiem D. Forsyth D.:Thinking inside the box: using appearance models and context based on room geometry. In:European Conference on Computer Vision pp.224–237(2010)

5. The Manhattan world assumption: regularities in scene statistics which enable Bayesian inference;Coughlan J.;Adv. Neural Inf. Process. Syst.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3