MCR: Multilayer cross‐fusion with reconstructor for multimodal abstractive summarisation

Author:

Yuan Jingshu12ORCID,Yun Jing12,Zheng Bofei12,Jiao Lei12,Liu Limin1

Affiliation:

1. College of Data Science and Application Inner Mongolia University of Technology Huhhot China

2. Inner Mongolia Autonomous Region Engineering & Technology Research Center of Big Data Based Software Service Huhhot China

Abstract

AbstractMultimodal abstractive summarisation (MAS) aims to generate a textual summary from multimodal data collection, such as video‐text pairs. Despite the success of recent work, the existing methods lack a thorough analysis for consistency across multimodal data. Besides, previous work relies on the fusion method to extract multimodal semantics, neglecting the constraints for complementary semantics of each modality. To address those issues, a multilayer cross‐fusion model with the reconstructor for the MAS task is proposed. Their model could thoroughly conduct cross‐fusion for each modality via layers of cross‐modal transformer blocks, resulting in cross‐modal fusion representations with consistency across modalities. Then the reconstructor is employed to reproduce source modalities based on cross‐modal fusion representations. The reconstruction process constrains the fusion representations with the complementary semantics of each modality. Comprehensive comparison and ablation experiments on the open domain multimodal dataset How2 are proposed. The results empirically verify the effectiveness of the multilayer cross‐fusion with the reconstructor structure on the proposed model.

Funder

Natural Science Foundation of Inner Mongolia

National Natural Science Foundation of China

Department of Science and Technology of Inner Mongolia

Publisher

Institution of Engineering and Technology (IET)

Subject

Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3