Online multiple object tracking with enhanced Re‐identification

Author:

Yang Wenyu1ORCID,Jiang Yong1,Wen Shuai1,Fan Yong1

Affiliation:

1. Department of Computer Science and Technology Southwest University of Science and Technology Mianyang China

Abstract

AbstractIn existing online multiple object tracking algorithms, schemes that combine object detection and re‐identification (ReID) tasks in a single model for simultaneous learning have drawn great attention due to their balanced speed and accuracy. However, different tasks require to focus different features. Learning two different tasks in the same model extracted features can lead to competition between the two tasks, making it difficult to achieve optimal performance. To reduce this competition, a task‐related attention network, which uses a self‐attention mechanism to allow each branch to learn on feature maps related to its task is proposed. Besides, a smooth gradient‐boosting loss function, which improves the quality of the extracted ReID features by gradually shifting the focus to the hard negative samples of each object during training is introduced. Extensive experiments on MOT16, MOT17, and MOT20 datasets demonstrate the effectiveness of the proposed method, which is also competitive in current mainstream algorithm.

Publisher

Institution of Engineering and Technology (IET)

Subject

Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3