Image feature learning combined with attention‐based spectral representation for spatio‐temporal photovoltaic power prediction

Author:

Guo Xingchen1,Lai Jing2ORCID,Zheng Zhou3,Lin Chenxiang3,Dai Yuxing4ORCID,Xu Xuexin4,San Haisheng2,Jia Rong1,Zhang Zhihong4

Affiliation:

1. School of Electrical Engineering Xi'an University of Technology Xi'an China

2. Peng‐Tung Sah Institute of Micro‐Nano Science and Technology Xiamen University Xiamen China

3. State Grid Fujian Electric Power Research Institute Fuzhou China

4. School of Informatics Xiamen University Xiamen China

Abstract

AbstractClean energy is a major trend. The importance of photovoltaic power generation is also growing. Photovoltaic power generation is mainly affected by the weather. It is full of uncertainties. Previous work has relied chiefly on historical photovoltaics data for time series forecasts. However, unforeseen weather conditions can sometimes skew. Consequently, a spatial‐temporal‐meteorological‐long short‐term memory prediction model (STM‐LSTM) is proposed to compensate for the shortage of photovoltaic prediction models for uncertainties. This model can simultaneously process satellite image data, historical meteorological data, and historical power generation data. In this way, historical patterns and meteorological change information are extracted to improve the accuracy of photovoltaic prediction. STM‐LSTM processes raw satellite data to obtain cloud image data. It can extract cloud motion information using the dense optical flow method. First, the cloud images are processed to extract cloud position information. By adaptive attentive learning of images in different bands, a better representation for subsequent tasks can be obtained. Second, it is important to process historical meteorological data to learn meteorological change patterns. Last but not least, the historical photovoltaic power generation sequences are combined to obtain the final photovoltaic prediction results. After a series of experimental validation, the performance of the proposed STM‐LSTM model has a good improvement compared with the baseline model.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3