Multi‐modal video search by examples—A video quality impact analysis

Author:

Wu Guanfeng12ORCID,Haider Abbas1,Tian Xing3,Loweimi Erfan4,Chan Chi Ho5,Qian Mengjie4,Muhammad Awan5,Spence Ivor1,Cooper Rob6,Ng Wing W. Y.7,Kittler Josef5,Gales Mark4,Wang Hui1

Affiliation:

1. School of Electronics, Electrical Engineering and Computer Science Queen's University Belfast Belfast UK

2. School of Mathematics Southwest Jiaotong University Chengdu China

3. School of Artificial Intelligence South China Normal University Guangzhou China

4. Machine Intelligence Lab Department of Engineering University of Cambridge Cambridge UK

5. The Centre for Vision, Speech and Signal Processing (CVSSP) University of Surrey Guildford UK

6. BBC Research and Development British Broadcasting Corporation—BBC London UK

7. School of Computer Science and Engineering South China University of Technology Guangzhou China

Abstract

AbstractAs the proliferation of video content continues, and many video archives lack suitable metadata, therefore, video retrieval, particularly through example‐based search, has become increasingly crucial. Existing metadata often fails to meet the needs of specific types of searches, especially when videos contain elements from different modalities, such as visual and audio. Consequently, developing video retrieval methods that can handle multi‐modal content is essential. An innovative Multi‐modal Video Search by Examples (MVSE) framework is introduced, employing state‐of‐the‐art techniques in its various components. In designing MVSE, the authors focused on accuracy, efficiency, interactivity, and extensibility, with key components including advanced data processing and a user‐friendly interface aimed at enhancing search effectiveness and user experience. Furthermore, the framework was comprehensively evaluated, assessing individual components, data quality issues, and overall retrieval performance using high‐quality and low‐quality BBC archive videos. The evaluation reveals that: (1) multi‐modal search yields better results than single‐modal search; (2) the quality of video, both visual and audio, has an impact on the query precision. Compared with image query results, audio quality has a greater impact on the query precision (3) a two‐stage search process (i.e. searching by Hamming distance based on hashing, followed by searching by Cosine similarity based on embedding); is effective but increases time overhead; (4) large‐scale video retrieval is not only feasible but also expected to emerge shortly.

Funder

Engineering and Physical Sciences Research Council

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3