Designing a decentralized multi‐community peer‐to‐peer electricity trading framework

Author:

Shafiekhani Morteza1ORCID,Qadrdan Meysam1,Zhou Yue1,Wu Jianzhong1

Affiliation:

1. School of Engineering Cardiff University Cardiff UK

Abstract

AbstractElectric power systems are currently undergoing a transformation towards a decentralized paradigm by actively involving prosumers, through the utilization of distributed multi‐energy sources. This research introduces a fully decentralized multi‐community peer‐to‐peer electricity trading mechanism, which integrates iterative auction and pricing methods within local electricity markets. The mechanism classifies peers in all communities on an hourly basis depending on their electricity surplus or deficit, facilitating electricity exchange between sellers and buyers. Moreover, communities engage in energy exchange not only within and between themselves but also with the grid. The proposed mechanism adopts a fully decentralized approach known as the alternating direction method of multipliers. The key advantage of this approach is that it eliminates the need for a supervisory node or the disclosure of private information of the involved parties. Furthermore, this study incorporates the flexibility provided by residential heating systems and energy storage systems into the energy scheduling of some prosumers. Case studies illustrate that the proposed multi‐community peer‐to‐peer electricity trading mechanism effectively enhances local energy balance. Specifically, the proposed mechanism reduces average daily electricity costs for individual prosumers by 63% compared to scenarios where peer‐to‐peer electricity trading is not employed.

Publisher

Institution of Engineering and Technology (IET)

Reference34 articles.

1. Review of Net Zero GOV.UK.https://www.gov.uk/government/publications/review‐of‐net‐zero(2022). Accessed 15 Feb 2024

2. RecordGrowthinRenewablesAchievedDespiteEnergyCrisis. Accessed 15 Feb 2024

3. Distributed energy systems: A review of classification, technologies, applications, and policies

4. Grid Integration Challenges and Solution Strategies for Solar PV Systems: A Review

5. Enhancing smart grid integrated renewable distributed generation capacities: Implications for sustainable energy transformation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3