On the practical aspects of machine learning based active power loss forecasting in transmission networks

Author:

Pandžić Franko1ORCID,Sudić Ivan1,Capuder Tomislav1,Pavičić Ivan2

Affiliation:

1. Department of Energy and Power Systems University of Zagreb Faculty of Electrical Engineering and Computing Zagreb Croatia

2. Department for Market Integration and Business Intelligence Croatian Transmission System Operator Zagreb Croatia

Abstract

AbstractThe cost for covering active power losses makes a significant item in transmission system operators (TSO) annual budgets, and still it received limited attention in the existing literature. The focus of accurate power loss forecasting and procurement is of high increase during the past 2 years due to spikes in electricity prices, making the cost of covering the active power losses a dominant factor of TSO operational costs. This paper presents practical aspects of the highly accurate models for transmission loss forecast in the day ahead time frame for the Croatian transmission system. The contributions are two‐fold: 1) Practical insights into usable TSO data are provided, filling a critical research gap and a foundational literature review is established on transmission loss forecasting. 2) A novel method utilizing only electricity transit data as input which outperforms existing practices is presented. For this, several algorithms such as gradient boosted decision tree model (XGB), support vector regressors, multiple linear regression and fully connected feedforward artificial neural networks are developed, and implemented and validated on data obtained from the Croatian TSO. The results show that the XGB model outperforms current TSO model by 32% for 4 months of comparison and TSCNET's commercial solution by 25% during a year‐long testing period. The developed XGB model is also implemented as a software tool and put into everyday operation with the Croatian TSO.

Funder

European Regional Development Fund

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3