Reinforcement learning layout‐based optimal energy management in smart home: AI‐based approach

Author:

Afroosheh Sajjad12,Esapour Khodakhast3ORCID,Khorram‐Nia Reza3,Karimi Mazaher4ORCID

Affiliation:

1. Department of Electrical and Computer Engineering University of Washington Seattle Washington USA

2. Department of Physics and Astronomy Bowling Green State University Bowling Green Ohio USA

3. Department of Electrical Engineering, Safashahr Branch Islamic Azad University Safashahr Iran

4. School of Technology and Innovations University of Vaasa Vaasa Finland

Abstract

AbstractThis research addresses the pressing need for enhanced energy management in smart homes, motivated by the inefficiencies of current methods in balancing power usage optimization with user comfort. By integrating reinforcement learning and a unique column‐and‐constraint generation strategy, the study aims to fill this gap and offer a comprehensive solution. Furthermore, the increasing adoption of renewable energy sources like solar panels underscores the importance of developing advanced energy management techniques, driving the exploration of innovative approaches such as the one proposed herein. The constraint coordination game (CCG) method is designed to efficiently manage the power usage of each appliance, including the charging and discharging of the energy storage system. Additionally, a deep learning model, specifically a deep neural network, is employed to forecast indoor temperatures, which significantly influence the energy demands of the air conditioning system. The synergistic combination of the CCG method with deep learning‐based indoor temperature forecasting promises significant reductions in homeowner energy expenses while maintaining optimal appliance performance and user satisfaction. Testing conducted in simulated environments demonstrates promising results, showcasing a 12% reduction in energy costs compared to conventional energy management strategies.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3