Affiliation:
1. Department of Electrical and Computer Engineering University of Washington Seattle Washington USA
2. Department of Physics and Astronomy Bowling Green State University Bowling Green Ohio USA
3. Department of Electrical Engineering, Safashahr Branch Islamic Azad University Safashahr Iran
4. School of Technology and Innovations University of Vaasa Vaasa Finland
Abstract
AbstractThis research addresses the pressing need for enhanced energy management in smart homes, motivated by the inefficiencies of current methods in balancing power usage optimization with user comfort. By integrating reinforcement learning and a unique column‐and‐constraint generation strategy, the study aims to fill this gap and offer a comprehensive solution. Furthermore, the increasing adoption of renewable energy sources like solar panels underscores the importance of developing advanced energy management techniques, driving the exploration of innovative approaches such as the one proposed herein. The constraint coordination game (CCG) method is designed to efficiently manage the power usage of each appliance, including the charging and discharging of the energy storage system. Additionally, a deep learning model, specifically a deep neural network, is employed to forecast indoor temperatures, which significantly influence the energy demands of the air conditioning system. The synergistic combination of the CCG method with deep learning‐based indoor temperature forecasting promises significant reductions in homeowner energy expenses while maintaining optimal appliance performance and user satisfaction. Testing conducted in simulated environments demonstrates promising results, showcasing a 12% reduction in energy costs compared to conventional energy management strategies.
Publisher
Institution of Engineering and Technology (IET)