A novel stochastic framework for optimal scheduling of smart cities as an energy hub

Author:

Shokri Masoud1,Niknam Taher1ORCID,Mohammadi Mojtaba1,Dehghani Moslem1ORCID,Siano Pierluigi23,Ouahada Khmaies3,Sarvarizade‐Kouhpaye Miad4

Affiliation:

1. Department of Electrical and Electronics Engineering Shiraz University of Technology Shiraz Iran

2. Department of Management and Innovation Systems University of Salerno via Giovanni Paolo II Fisciano Italy

3. Department of Electrical and Electronic Engineering Science University of Johannesburg Johannesburg South Africa

4. Instituto de Investigación Tecnológica Comillas Pontifical University ICAI School of Engineering Madrid Spain

Abstract

AbstractSmart cities consist of various energy systems and services that must be optimally scheduled to improve energy efficiency and reduce operation costs. The smart city layout comprises a power distribution system, a thermal energy system, a water system, and the private and public transportation systems. Additionally, several new technologies such as reconfiguration, regenerative braking energy of the metro, etc. are considered. This study is one of the first to consider all these technologies together in a smart city. The proposed power distribution system is a grid‐connected hybrid AC–DC microgrid. The biogeography‐based optimization algorithm was utilized to seek the best solution for scheduling micro‐turbines, fuel cells, heat pumps, desalination units, energy storage systems, AC–DC converters, purchasing power from the upstream, distributed energy resources, and transferring power amongst electric vehicle parking stations and metro for the next day. Also, the reduced unscented transformation layout was used to capture the system's uncertainty. The suggested layout is implemented on an enhanced IEEE 33‐bus test system to show the efficiency of the suggested method. The results show that costs and environmental pollution are reduced. By comparing the proposed smart city with other studies, the efficiency and completeness of the proposed smart city are shown.

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3