Research on priority scheduling strategy for smoothing power fluctuations of microgrid tie‐lines based on PER‐DDPG algorithm

Author:

Dong Lun12,Huang Yuan1,Xu Xiao1ORCID,Zhang Zhenyuan3,Liu Junyong1,Pan Li1,Hu Weihao3ORCID

Affiliation:

1. College of Electrical Engineering Sichuan University Chengdu China

2. Xiaogan Electric Power Supply Company State Grid Hubei Electric Power Company Limited Xiaogan Hubei Province China

3. School of Mechanical and Electrical Engineering University of Electronic Science and Technology of China Chengdu China

Abstract

AbstractThe variability of renewable energy within microgrids (MGs) necessitates the smoothing of power fluctuations through the effective scheduling of internal power equipment. Otherwise, significant power variations on the tie‐line connecting the MG to the main power grid could occur. This study introduces an innovative scheduling strategy that utilizes a data‐driven approach, employing a deep reinforcement learning algorithm to achieve this smoothing effect. The strategy prioritizes the scheduling of MG's internal power devices, taking into account the stochastic charging patterns of electric vehicles. The scheduling optimization model is initially described as a Markov decision process with the goal of minimizing power fluctuations on the interconnection lines and operational costs of the MG. Subsequently, after preprocessing the historical operational data of the MG, an enhanced scheduling strategy is developed through a neural network learning process. Finally, the results from four scheduling scenarios demonstrate the significant impact of the proposed strategy. Comparisons of reward curves before and after data preprocessing underscore its importance. In contrast to optimization results from deep deterministic policy gradient, soft actor‐critic, and particle swarm optimization algorithms, the superiority of the deep deterministic policy gradient algorithm with the addition of a priority experience replay mechanism is highlighted.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3