Moth‐flame‐optimisation based parameter estimation for model‐predictive‐controlled superconducting magnetic energy storage‐battery hybrid energy storage system

Author:

Liu Lu1ORCID,Sheng Jie1,Liang Hanyu1,Yang Jinshan1,Ye Haosheng1,Jiang Junjie1

Affiliation:

1. The School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China

Abstract

AbstractSuperconducting magnetic energy storage‐battery hybrid energy storage system (HESS) has a broad application prospect in balancing direct current (DC) power grid voltage due to its fast dynamic response ability under low‐frequency/high‐frequency disturbances. Model‐predictive‐control (MPC) with characteristics such as high sampling rate and wide applicability could be applied to HESS. However, considering that the relevant circuit parameters would change with ambient temperature, interference and ageing, the effect of MPC may deteriorate inevitably. This article proposes an improved MPC strategy for SMES‐Battery HESS, taking moth‐flame‐optimisation (MFO) algorithm to calculate the circuit parameters in real time. The actual parameters are updated by MFO and then sent to model predictive controller to minimise the model mismatches. The advantages of high accuracy and fast convergence speed is verified by comparison with grey wolf optimisation and particle swarm optimisation. The simulation shows that by taking the proposed scheme, DC bus voltage are more stable and the superconducting magnetic energy storage can maintain more than 95% capacity utilisation and avoid over‐discharge even if the model parameters are inconsistent with the actual ones under circumstances of alternating current grid fault and fluctuation of new energy output.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3