Predicting the magnitude and timing of peak electricity demand: A competition case study

Author:

Donaldson Daniel L.1ORCID,Browell Jethro2ORCID,Gilbert Ciaran3ORCID

Affiliation:

1. School of Engineering University of Birmingham Birmingham UK

2. School of Mathematics and Statistics University of Glasgow Glasgow UK

3. Independent Researcher Glasgow UK

Abstract

AbstractAs weather dependence of the electricity network grows, there is an increasing need to predict the time at which the network peak load will occur. Improving forecasts of peak hour can lead to more accurate scheduling of generation as well as the ability to use flexibility to improve system utilisation or defer capital investment. While there are extensive benchmark models for forecasting electricity demand, their efficacy at forecasting the time or shape of the peak remains to be seen. Global forecasting competitions provide a unique opportunity to compare multiple methodologies under common performance criteria and incentives. The methodology and results are detailed from the Big Data and Energy Analytics Laboratory Challenge 2022 used by the team ‘peaky‐finders’ and investigates the suitability of using hourly methods to forecast daily peak magnitude, time, and shape. The resulting approach provides a reproducible ensemble benchmark against which to evaluate more complex methods. Results indicate that simple regression techniques can perform well and outperform more complicated methods during seasons with low hourly variability, however ensemble methods show higher accuracy overall. The results also highlight the significant impact of extreme weather on forecast accuracy, demonstrating the importance of forecasting processes that are resilient to extreme weather.

Funder

University of Birmingham

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3