Affiliation:
1. Department of Electrical Engineering Khomeinishahr Branch, Islamic Azad University Isfahan Iran
2. Centre for Industrial Electronics Department of Mechanical and Electrical Engineering, University of Southern Denmark Sonderborg Denmark
3. Department of Engineering Technology Technical University of Denmark Ballerup Denmark
Abstract
AbstractA secondary control method is proposed for accurate reactive power sharing as well as frequency and voltage restoration in islanded AC microgrids (MGs). The proposed method consists of an MG secondary controller, local secondary controllers for distributed energy resources (DERs), and a low‐bandwidth communication link for broadcasting common data from the MG secondary controller to DERs. The broadcasted data includes the MG point of common coupling voltage magnitude and a common vertical shift for frequency and voltage restoration. Local secondary controllers calculate specific shifts for the Q‐V droop characteristic of each dispatchable DER and the V‐Q reverse droop characteristic of each photovoltaic (PV) system, aligning their operating points with the Q‐VPCC and VPCC‐Q droop characteristics, respectively. By employing VPCC as a common global variable, coordination of reactive power generation of all dispatchable DERs and PV systems is achieved, enabling accurate reactive power sharing. Importantly, in the proposed scheme, the required communication bandwidth and the communication burden are minor and are not increased with the number of DERs. Additionally, the DERs are relieved of the need for data transmission capability. The small signal stability of the proposed method is examined and its effectiveness is validated through Hardware‐in‐the‐Loop (HIL) experimental results.
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献