Secondary control with reduced communication requirements for accurate reactive power sharing in AC microgrids

Author:

Baharizadeh Mehdi1ORCID,Golsorkhi Mohammad Sadegh2ORCID,Savaghebi Mehdi3ORCID

Affiliation:

1. Department of Electrical Engineering Khomeinishahr Branch, Islamic Azad University Isfahan Iran

2. Centre for Industrial Electronics Department of Mechanical and Electrical Engineering, University of Southern Denmark Sonderborg Denmark

3. Department of Engineering Technology Technical University of Denmark Ballerup Denmark

Abstract

AbstractA secondary control method is proposed for accurate reactive power sharing as well as frequency and voltage restoration in islanded AC microgrids (MGs). The proposed method consists of an MG secondary controller, local secondary controllers for distributed energy resources (DERs), and a low‐bandwidth communication link for broadcasting common data from the MG secondary controller to DERs. The broadcasted data includes the MG point of common coupling voltage magnitude and a common vertical shift for frequency and voltage restoration. Local secondary controllers calculate specific shifts for the Q‐V droop characteristic of each dispatchable DER and the V‐Q reverse droop characteristic of each photovoltaic (PV) system, aligning their operating points with the Q‐VPCC and VPCC‐Q droop characteristics, respectively. By employing VPCC as a common global variable, coordination of reactive power generation of all dispatchable DERs and PV systems is achieved, enabling accurate reactive power sharing. Importantly, in the proposed scheme, the required communication bandwidth and the communication burden are minor and are not increased with the number of DERs. Additionally, the DERs are relieved of the need for data transmission capability. The small signal stability of the proposed method is examined and its effectiveness is validated through Hardware‐in‐the‐Loop (HIL) experimental results.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3