Face Forgery Detection with Long-Range Noise Features and Multilevel Frequency-Aware Clues

Author:

Zhao Yi1ORCID,Jin Xin2,Gao Song2,Wu Liwen2,Yao Shaowen2ORCID,Jiang Qian2ORCID

Affiliation:

1. School of Information Science and Engineering, Yunnan University, Kunming, Yunnan 650091, China

2. The Engineering Research Center of Cyberspace and the School of Software, Yunnan University, Kunming, Yunnan 650091, China

Abstract

The widespread dissemination of high-fidelity fake faces created by face forgery techniques has caused serious trust concerns and ethical issues in modern society. Consequently, face forgery detection has emerged as a prominent topic of research to prevent technology abuse. Although, most existing face forgery detectors demonstrate success when evaluating high-quality faces under intra-dataset scenarios, they often overfit manipulation-specific artifacts and lack robustness to postprocessing operations. In this work, we design an innovative dual-branch collaboration framework that leverages the strengths of the transformer and CNN to thoroughly dig into the multimodal forgery artifacts from both a global and local perspective. Specifically, a novel adaptive noise trace enhancement module (ANTEM) is proposed to remove high-level face content while amplifying more generalized forgery artifacts in the noise domain. Then, the transformer-based branch can track long-range noise features. Meanwhile, considering that subtle forgery artifacts could be described in the frequency domain even in a compression scenario, a multilevel frequency-aware module (MFAM) is developed and further applied to the CNN-based branch to extract complementary frequency-aware clues. Besides, we incorporate a collaboration strategy involving cross-entropy loss and single center loss to enhance the learning of more generalized representations by optimizing the fusion features of the dual branch. Extensive experiments on various benchmark datasets substantiate the superior generalization and robustness of our framework when compared to the competing approaches.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3