Bio‐fabrication of silver nanoparticles using an aqueous extract of Quercus baloot: Preparation, characterization and in vitro antimicrobial evaluation

Author:

Rabbi Fazle1,Nisar Amna2,Nawaz Noor Ul Ain3,AlMasoud Najla4,Alomar Taghrid S.4,Rauf Abdur5

Affiliation:

1. Department of Pharmacy Abasyn University Peshawar Peshawar Khyber Pakhtunkhwa Pakistan

2. Department of Pharmacy University of Peshawar Peshawar Khyber Pakhtunkhwa Pakistan

3. Department of Pharmcy City University of Science & Information Technology Peshawar Peshawar Khyber Pakhtunkhwa Pakistan

4. Department of Chemistry College of Science Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia

5. Dpartment of Chemistry University of Swabi Swabi Khyber Pakhtunkhwa Pakistan

Abstract

Abstract In the current study, a novel method was used to synthesize silver nanoparticles (AgNPs) by utilizing Quercus baloot aqueous extract as a reducing agent. The biosynthesized AgNPs were then subjected to various physicochemical characterizations to assess their effectiveness against microbial familiarity. The characterization techniques included ultraviolet‐visible spectro‐photometry (UV‐Vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffractometer (XRD), and Fourier‐transform infrared spectroscopy (FTIR). The UV‐Vis analysis revealed a distinctive spectral peak at 420 nm, indicating the presence of silver nanoparticles. SEM imaging displayed the nanoparticle size range of about 100 nm at a magnification of 30,000x, while TEM demonstrated that the nanoparticles had a spherical morphology with a size of approximately 100 nm. Moreover, the crystalline structure of the silver nanoparticles was confirmed by XRD analysis, further validating their successful synthesis. Additionally, FTIR analysis provided evidence of the presence of phytochemicals involved in synthesizing the AgNPs. the biosynthesized silver nanoparticles (AgNPs) were evaluated for antibacterial and antifungal activities. The AgNPs displayed substantial efficacy against common bacterial strains, including Staphylococcus aureus (71%), Escherichia coli (59%), and Klebsiella pneumoniae (64%). Furthermore, they demonstrated significant antifungal activity against plant pathogenic fungi, namely Aspergillus niger (65%), Aspergillus flavus (70%) and Fusarium oxysporum (61%).

Publisher

Institution of Engineering and Technology (IET)

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3