Recent developments in carbon‐based electrodes surface modification for zinc bromine flow battery

Author:

Li Yanhong1,Sun Xiaoyun2ORCID,Meng Lin3,Wang Xingxing1,Ouyang Boxue1,Wang Deren2,Zhao Chenyu1,Hu Haochen2

Affiliation:

1. China Huadian Engineering Co., Ltd. Beijing China

2. Institute for Advanced Materials and Technology University of Science and Technology Beijing China

3. Jiangsu Heng'an Energy Storage Technology Co., Ltd. Beijing China

Abstract

AbstractZinc‐bromine flow batteries (ZBFBs) hold promise as energy storage systems for facilitating the efficient utilisation of renewable energy due to their low cost, high energy density, safety features, and long cycle life. However, challenges such as uneven zinc deposition leading to zinc dendrite formation on the negative electrode and parasitic hydrogen evolution reaction during charging pose risks of membrane puncturing and short circuits, thereby limiting energy density improvements. Additionally, the sluggish and non‐reversible Br2/Br redox reaction hampers battery power density enhancements. Given that electrode properties significantly influence the rate and reversibility of these redox reactions, modifications to the negative and positive electrodes are crucial. While inert carbon‐based electrodes are favoured for their corrosion resistance and conductivity, their hydrophobic nature and low electrochemical activity restrain the performance of ZBFBs. The authors present a comprehensive review of recent advancements in both negative and positive electrode modifications in ZBFBs. It also puts forward future research directions aimed at overcoming existing challenges, with the ultimate objective of promoting the efficient utilisation of ZBFBs.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3