An accelerated primal‐dual method for semi‐definite programming relaxation of optimal power flow

Author:

Shi Zhan1ORCID,Wang Xinying1,Yan Dong1,Chen Sheng1,Lin Zhenwei2,Xia Jingfan2,Deng Qi3

Affiliation:

1. Artificial Intelligence Application Research Department China Electric Power Research Institute Beijing China

2. Research and Development Department Cardinal Operations (Beijing) Co., Ltd. Beijing China

3. School of Information Management and Engineering Shanghai University of Finance and Economics Shanghai China

Abstract

AbstractThe application of a semi‐definite programming (SDP) approach to the Alternating Current Optimal Power Flow problem has attracted significant attention in recent years. However, the SDP relaxation of optimal power flow (OPF) can be computationally intensive and lead to memory issues when dealing with large‐scale power systems. To overcome these challenges, we have developed APD–SDP, an optimisation solver based on a first‐order primal–dual algorithm. This framework incorporates various acceleration techniques, such as rescaling, step size decay and reset, adaptive line search, and restart, to improve efficiency. To further speed up computations, we have developed a customised eigenvalue decomposition component by exploiting the 3 × 3 block structure in the dual SDP formulation. Experimental results demonstrate that APD–SDP outperforms other commercial and open‐source SDP solvers on large‐scale and high‐dimensional PGLib‐OPF datasets.

Publisher

Institution of Engineering and Technology (IET)

Subject

Energy Engineering and Power Technology,Engineering (miscellaneous),Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3