Robust optimisation of electricity‐heating integrated energy system based on data‐driven PV interval estimation

Author:

Xu Tao1ORCID,Liu Zuozheng1ORCID,Guo Lingxu2,Meng He1,Wang Rujing1,Li Mengchao1,Cai Shuqi1

Affiliation:

1. Key Laboratory of Smart Grid of Ministry of Education Tianjin University Tianjin China

2. State Grid Tianjin Electric Power Co. Tianjin China

Abstract

AbstractShort‐term interval estimation can effectively and precisely quantify the uncertainties of renewable energy, accurately represent the range of fluctuations of uncertain variables in robust optimisation of electricity‐heating integrated energy system (EHIES) and it is getting crucial for reliable and flexible operation of renewable dominated new energy systems. The authors present a multivariate data‐driven short‐term PV power interval prediction model that consists of multiple layers, including one‐dimensional convolutional layer, ultra‐lightweight subspace attention mechanism (ULSAM), bidirectional long and short‐term memory (BiLSTM), quantile regression (QR) and kernel density estimation (KDE). The one‐dimensional convolutional layer and ULSAM can extract sequential features and highlight key information from the data; the BiLSTM processes time series data in both directions and conveys historical information; the QR and KDE models generate interval prediction with a given confidence level. Based on the proposed interval estimation, a refined PV uncertainty set can be established and adopted by robust optimal scheduling of EHIES utilising min‐max‐min algorithm. The simulation results have demonstrated the estimation accuracy and adaptability to various weather scenarios.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Energy Engineering and Power Technology,Engineering (miscellaneous),Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3