Research of simulation and experiment on arc characteristics of gas mechanical switch

Author:

Jiang Cheng123ORCID,Qu Lu1,Yu Zhangqing13,Gan Zhizheng1ORCID,yan Xin1,Zeng Rong1,Huang Yulong1,Li Shaofu2

Affiliation:

1. Department of Electrical Engineering Tsinghua University Beijing China

2. School of Information Engineering Southwest University of Science and Technology Mianyang China

3. Sichuan Energy Internet Research Institute Tsinghua University Chengdu China

Abstract

AbstractAn arc is the high‐temperature discharge plasma produced in the opening process of mechanical switches, which directly affects the breaking capability of a hybrid DC circuit breaker. According to the physical mechanism of an electric arc, the construction of an arc model for simulation analysis is an important technical means in the electrical field. In this study, based on the theory of magneto hydrodynamics (MHD), a gas mechanical switch model of a natural commutation DC circuit breaker with a compound gap is established. The arc motion process under different conditions is simulated and calculated. The influence of different initial pressures, different opening speeds, and different striking currents on the arc voltage characteristics is analysed. The results show that the larger the gas pressure, the smaller the arc volume and the higher the arc voltage. The faster the opening speed, the longer the arc and the higher the arc voltage; with the increase of the current, the arc voltage increases rapidly at a low current, while the arc voltage increases slowly at a high current.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3