Charge transport mechanism of cross‐linked polyethylene/silicone rubber composite insulation by energy band theory

Author:

Wang Yani1,Ren Pinshun1ORCID,Wang Yalin2,Zhang Shuai1,Yang Xingwu1

Affiliation:

1. College of Electrical Engineering Shanghai University of Electric Power Shanghai China

2. Department of Electrical Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China

Abstract

AbstractThe composite insulation composed of cross‐linked polyethylene (XLPE) and silicone rubber (SiR) is common in high voltage direct current cable accessory installation. However, the space charge accumulation, especially the interfacial charge accumulation of XLPE/SiR, poses a serious threat to the safe operation of cable accessories, and its charge transport mechanism is still unclear, especially at the micro‐scale. In order to investigate the charge transport mechanism of XLPE/SiR, simultaneous measurement of space charge and relaxation current is performed on XLPE/SiR at various electric fields with different polarities, and the electronic energy levels of XLPE and SiR are determined by quantum chemical calculation (QCC). The results of QCC show that both the hole traps and the electron traps in XLPE are mainly shallow traps. As for SiR, the hole traps are shallow traps, while the electron traps are deep traps. The results of simultaneous measurement show that the interfacial charge accumulation and the composite conductivity of XLPE/SiR are significantly different under different polarities, that is, there is an obvious polarity effect. Based on the results of QCC, the electronic energy levels of XLPE/SiR system are constructed considering the interface between XLPE and SiR, as well as the interfaces between the materials and the electrodes. On this basis, the charge transport mechanism of XLPE/SiR is discussed in detail, and the polarity effect is well explained, which is believed to be related to the differences in the charge injection barrier and the interfacial barrier under different polarities, as well as the electron/hole traps in XLPE and SiR.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3