Behaviour and mechanisms of molecular vibrations induced by a pulsed voltage in a silicone elastomer used for device encapsulation

Author:

Wei Junyu1ORCID,He Dongxin1ORCID,Gao Teng1ORCID,Zhu Lin2,Wang Haochen1,Li Qingquan1,Teyssedre Gilbert3

Affiliation:

1. Shandong Provincial Key Laboratory of UHV Transmission Technology and Equipment School of Electrical Engineering Shandong University Jinan China

2. School of Materials Science and Engineering Shandong University Jinan China

3. UPS INPT CNRS LAPLACE (Laboratoire Plasma et Conversion d’Energie) University of Toulouse Toulouse France

Abstract

AbstractSilicone elastomers are widely used to encapsulate power electronic devices. However, such devices may be subjected to square‐wave pulsed voltages with a high rate of change, which can create significant challenges for encapsulation insulation. In this article, the molecular vibration of silicon elastomer at the edge of pulsed electric field is studied. Firstly, the relationship between the intensity of molecular vibration and the parameters of pulsed electric field is explored. The experimental results show that the amplitude of the vibrations decreases as the pulse‐edge time increases, and it increases linearly as the pulse‐edge slope increases. Furthermore, the amplitude of the vibrations is proportional to the square of the amplitude of the pulsed electric field, and it increases as the space charge density increases. Then, the force analysis of charged molecule at the pulse edges is calculated, and the theoretical change law of molecular vibration intensity with pulse edge slope is deduced. Comparing the theoretical results with the experimental results, it is found that they are highly consistent. Finally, electrically induced mechanical stress caused by molecular vibration was shown to be an important factor in insulation failure.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3