Effect of electron beam irradiation on surface molecule and flashover voltage of epoxy composites

Author:

Li Mingru1ORCID,Niu Huan1,Shang Kai1,Lang Jianyu1,Gao Yafang1,Li Bingnan1,Zhao Jiuhui1,Li Zhen12ORCID,Feng Yang1,Li Shengtao1

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an Shaanxi China

2. Key Laboratory of Engineering Dielectrics and Its Application Ministry of Education Harbin University of Science and Technology Harbin Heilongjiang China

Abstract

AbstractThe unsatisfactory insulating properties of solid–gas interfaces seriously restrict the development of high‐voltage electrical equipment and threaten their power supply stability. Electron‐beam irradiation (EBI) can effectively improve the surface flashover voltage of dielectrics. However, the underlying mechanism of EBI in tailoring the surface trap and improving the flashover voltage remains unclear. In this study, the surface morphologies and chemical compositions of epoxy composites treated with EBI were investigated. In addition, the surface wetting properties, surface charge migration parameters, and surface flashover voltages were experimentally characterised. It was found that EBI aggravated the surface morphology, changed the surface chemical components, and repressed surface charge transportation. As a result, the contact angle was reduced from 103.7° to 78.43°, and the flashover voltage in SF6 was increased from 35.26 to 38.90 kV. DFT calculations showed that the newly generated C–O–H and C=O bonds on the surface molecules after EBI formed charge centres at the molecular electrostatic potential, which enhanced the trapping effect of the surface deep trap. As a result, surface charge migration was repressed, and the surface flashover voltage was improved. This study could promote the further development of EBI on materials modification.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3