Multiscale and multidirection depth map super resolution with semantic inference
-
Published:2023-08-18
Issue:13
Volume:17
Page:3670-3687
-
ISSN:1751-9659
-
Container-title:IET Image Processing
-
language:en
-
Short-container-title:IET Image Processing
Author:
Xu Dan1ORCID,
Fan Xiaopeng12ORCID,
Zhao Debin12ORCID,
Gao Wen23ORCID
Affiliation:
1. School of Computer Science and Technology Harbin Institute of Technology Harbin China
2. Peng Cheng National Laboratory Shenzhen China
3. School of Electronic Engineering and Computer Science Peking University Beijing China
Abstract
AbstractDepth map super resolution has been paid much attention in 3D applications due to the limitation of depth sensors. Few textures in objects with clear contours along them is the most important characteristic of depth map. An efficient image representation should be directional, multiscale and anisotropic. From this we propose a novel multiscale and multidirection depth map super resolution framework with semantic inference to improve the quality of depth maps. In this framework, a multiscale and multidirection depth map contour fusion scheme captures and assembles intrinsic geometrical structures through a multiview non‐subsampled contourlet transform manner. This scheme not only isolates the discontinuities of contours but retains the smoothness along the contours. The semantic inference is also utilized to segment and label the depth map into objects/backgrounds‐level which are coplanar. Furthermore, a semantic‐aware label refinement strategy is introduced to correct the rarely inaccurate labels of the label map for upscaling the target pixel with pixels in the same object or background. Experimental results on benchmark depth map dataset demonstrate that the proposed multiscale and multidirection depth map super resolution framework with semantic inference has a significant improvement than the state‐of‐the‐art algorithms both visually and quantitatively.
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献