SSTNet: Saliency sparse transformers network with tokenized dilation for salient object detection

Author:

Yang Mo1,Liu Ziyan12ORCID,Dong Wen1,Wu Ying1

Affiliation:

1. College of Big Data and Information Engineering Guizhou University Guiyang China

2. State Key Laboratory of Public Big Data Guizhou University Guiyang China

Abstract

AbstractThe vision Transformer structure performs better in salient object detection than the convolutional neural network (CNN)‐based approach. Vision Transformer predicts saliency by modelling long‐range dependencies from sequence to sequence with convolution‐free. It is challenging to distinguish the salient objects' location and obtain structural details for the influence of extracting irrelevant contextual information. A novel saliency sparse Transformer network is proposed to exploit sparse attention to guide saliency prediction. The convolution‐like with dilation in the token to token (T2T) module is replaced to achieve relationships in larger regions and to improve contextual information fusion. An adaptive position bias module is designed for the Vision Transformer to make position bias suitable for variable‐sized RGB images. A saliency sparse Transformer module is designed to improve the concentration of attention on the global context by selecting the Top‐k of the most relevant segments to improve the detection results further. Besides, cross‐modality to exploit the complementary RGB and depth modality fusion module (CMF) is used to take advantage of the complementary RGB image features and spatial depth information to enhance the feature fusion performance. Extensive experiments on multiple benchmark datasets demonstrate this method's effectiveness and superiority that it is suitable for saliency prediction comparable to state‐of‐the‐art RGB and RGB‐D saliency methods.

Funder

Science and Technology Program of Guizhou Province

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transformer technology in molecular science;WIREs Computational Molecular Science;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3