Water‐surface infrared small object detection based on spatial feature weighting and class balancing method

Author:

Hui Tian1ORCID,Xu YueLei1,Li HuaFeng1,Zhou Qing1,Rasol Jarhinbek1

Affiliation:

1. Institute of Unmanned System Research Northwestern Polytechnical University Xi'an China

Abstract

AbstractInfrared imaging is widely used due to its penetration capability to operate under many weather or lighting condition. However, due to the far distance of aerial view, feature blur, and the scarcity of aerial infrared data, the detection of small infrared targets on the water surface remains a challenging problem. In response to the problem of unclear features, we propose the spatial feature weighting method based on 2D Gaussian distribution. This method increases the weight of the target area by adaptively adjusting the feature activation. Secondly, for the problem of rare aerial perspective infrared data, we propose the cross‐spectral data migration method. By introducing the domain difference loss function to optimize the pseudo‐label selection process, the range of target domain distribution is expanded, and the adaptability of the detector is improved. Finally, in response to the problem of underfitting caused by category imbalance in transfer learning, we propose the class balancing method that effectively reduces the false detection. Extensive experiments were conducted on both benchmark datasets and the self‐built dataset to evaluate the effectiveness and robustness of our method. The proposed method was evaluated with different models and various scenarios, and the results demonstrated the effectiveness.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3