Image segmentation by selecting eigenvectors based on extended information entropy

Author:

Zhang Daming12ORCID,Zhang Xueyong12,Liu Huayong1

Affiliation:

1. School of Mathematics and Physics Anhui Jianzhu University Hefei China

2. Acoustic Environment of Anhui Higher Education Institution Hefei China

Abstract

AbstractFor spectral clustering algorithm, the quality of eigenvectors of graph affinity matrix is very important for the clustering result. So, how to obtain high‐quality eigenvectors is crucial. In this paper, the authors aim to propose some new measurement methods to evaluate each eigenvector of affinity matrix for spectral selection. Based on extended information entropy, three criteria, i.e. Spectral Distinguishability (SD), Spectral Distinguishability Validity (SDV) and pectral Distinguishability ‐Degree (SDD), are defined respectively. The compactness of clusters for each eigenvector is measured by SD; SDV is used to remove the inefficient eigenvectors for clustering; SDD is used to evaluate the contribution of eigenvectors to clustering and is exploited to build a selective spectral ensemble scheme. To indicate the merits of the authors’ algorithm, the authors consider varied artificial data and natural images, including Berkeley image segmentation data set as benchmark data set. The authors’ simulation results confirm the superior performance of the proposed method in developing spectral clustering compared to conventional clustering methods and recent eigenvectors‐selection‐based algorithms.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

Reference38 articles.

1. Data clustering: 50 years beyond K-means

2. Normalized cuts and image segmentation

3. A survey of kernel and spectral methods for clustering

4. Ghojogh B. Ghodsi A. Karray F. et al.: Laplacian‐based dimensionality reduction including spectral clustering Laplacian eigenmap locality preserving projection graph embedding and diffusion map: Tutorial and survey. arXiv preprint arXiv:2106.02154 (2021)

5. Verma D. Meila M.: A comparison of spectral clustering algorithms. University of Washington Tech Rep UWCSE030501 1 1–18(2003)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3