DS‐Net: Dual supervision neural network for image manipulation localization

Author:

Dai Chenwei1ORCID,Su Lichao1ORCID,Wu Bin1ORCID,Chen Jian2

Affiliation:

1. College of Computer and Data Science Fuzhou University Fuzhou China

2. College of Physics and Information Engineering Fuzhou University Fuzhou China

Abstract

AbstractWith the rapid development of image editing technology, tampering with images has become easier. Maliciously tampered images lead to serious security problems (e.g., when used as evidence). The current mainstream methods of image tampering are divided into three types which are copy‐move, splicing and removal. Many image tampering detection methods can only detect one type of image tampering. Additionally, some methods learn features by suppressing image content, which can result in false positives when identifying tampered areas. In this paper, the authors propose a novel framework named the dual supervision neural network (DS‐Net) to localize the tampered regions of images tampered by the three tampering methods mentioned above. First, to extract richer multiscale information, the authors add skip connections to the atrous spatial pyramid pooling (ASPP) module. Second, a channel attention mechanism is introduced to dynamically weigh the results generated by ASPP. Finally, the authors build additional supervised branches for high‐level features to further enhance the extraction of these high‐level features before fusing them with low‐level features. The authors conduct experiments on various standard datasets. Through extensive experiments, the results show that the AUC scores reach 86.4%, 95.3% and 99.6% for CASIA, COVERAGE and NIST16 datasets, respectively, and the F1 scores are 56.0%, 73.4% and 82.7%, respectively. The results demonstrate that the authors’ method can accurately locate tampered regions and achieve better performance on various datasets than other methods of the same type.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3