Affiliation:
1. School of Computer and Information Hohai University Nanjing China
2. Key Laboratory of Water Big Data Technology of Ministry of Water Resources Hohai University Nanjing China
Abstract
AbstractDense video captioning aims to locate multiple events in an untrimmed video and generate captions for each event. Previous methods experienced difficulties in establishing the multimodal feature relationship between frames and captions, resulting in low accuracy of the generated captions. To address this problem, a novel Dense Video Captioning Model Based on Local Attention (DVCL) is proposed. DVCL employs a 2D temporal differential CNN to extract video features, followed by feature encoding using a deformable transformer that establishes the global feature dependence of the input sequence. Then DIoU and TIoU are incorporated into the event proposal match algorithm and evaluation algorithm during training, to yield more accurate event proposals and hence increase the quality of the captions. Furthermore, an LSTM based on local attention is designed to generate captions, enabling each word in the captions to correspond to the relevant frame. Extensive experimental results demonstrate the effectiveness of DVCL. On the ActivityNet Captions dataset, DVCL performs significantly better than other baselines, with improvements of 5.6%, 8.2%, and 15.8% over the best baseline in BLEU4, METEOR, and CIDEr, respectively.
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献