MCNN: Conditional focus probability learning to multi‐focus image fusion via mutually coupled neural network

Author:

Wang Chengchao1ORCID,Pu Yuanyuan1,Wang Xue1,Ma Chaozhen1,Nie Rencan1

Affiliation:

1. School of Information Science and Engineering Yunnan University Kunming China

Abstract

AbstractIn this paper, a novel conditional focus probability learning model, termed MCNN, is proposed for multi‐focus image fusion (MFIF). Given a pair of source images, their conditional focus probabilities can be generated by using the well‐trained MCNN, which is further converted into the binary focus masks to directly produce an all‐focus image with no postprocessing. To this end, a fully convolutional encoder is designed with two mutually coupled Siamese branches in MCNN, which include a coupling block that bridge between the two branches to provide conditional information to each other, at different layers, such that the encoder can more strongly extract conditional focus features and further encourage the decoder pixel‐wisely to give more robust conditional focus probabilities. Moreover, a hybrid loss is designed with a structural sparse fidelity loss and a structural similarity loss to force the network to learn more accurate conditional focus probabilities. Particularly, a convolutional norm with good structural group sparse is proposed, to construct the structural sparse fidelity loss. Simulation results substantiate the superiority of our MCNN over other state‐of‐the‐art, in terms of both visual perception and quantitative evaluation.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3