Affiliation:
1. Department of Computer Science and Technology University of Harbin Engineering University Harbin China
Abstract
AbstractSkin cancer is one of the deadliest cancers, and it has been widely developed worldwide since the last decade. Malignant melanoma is currently the most deadly skin cancer. If malignant melanoma is diagnosed at an early stage, the probability of patients being cured will be greatly improved. At present, most existing skin lesion image classification methods only use deep learning. However, the multi‐modal features of skin lesions in the medical domain are not well utilized and integrated. To reduce the classification error of the skin lesion images caused by the complexity and subjectivity of visual interpretation, a malignant melanoma dermoscopy image classification method based on multi‐modal medical features is proposed in this paper which is inspired by the fuzzy decision‐making process of doctors. It can reduce the subjective difference in the image classification process and assist dermatologists to analyze the skin lesion area. Firstly, the feature detection method based on the extension theory can effectively quantify the difference between different colour features. Then, an interpretable segmentation edge of the skin lesion is established by using the neutrosophic theory which can convert the image into the neutrosophic space. The edge of the skin lesion is captured by applying the Hierarchical Gaussian Mixture Model (HGMM) method. Next, the edge sequence is established by segmenting the edge, and the contour regularity, symmetry, and uniformity of the edge of the skin lesion are analyzed. Finally, the extracted multi‐feature sets are used for dermoscopy image classification. Experiments are carried out on real datasets, and the classification accuracy of four kernel functions is verified. The experimental results show that the authors’ method can effectively improve the classification accuracy of benign dermoscopy images and malignant dermoscopy images.
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献