CMLocate: A cross‐modal automatic visual geo‐localization framework for a natural environment without GNSS information

Author:

Liu Zhuoqun1,Guo Fan1ORCID,Liu Heng1,Xiao Xiaoyue1,Tang Jin1

Affiliation:

1. School of Automation Central South University Changsha Hunan China

Abstract

AbstractIn this paper, a new approach to visual geo‐localization for natural environments is proposed. The digital elevation model (DEM) data in virtual space is rendered and construct a panoramic skyline database is constructed. By combining the skyline database with real‐world image data (used as the “queries” to be localized), visual geo‐localization is treated as a cross‐modal image retrieval problem for panoramic skyline images, creating a unique new visual geo‐localization benchmark for the natural environment. Specifically, the semantic segmentation model named LineNet is proposed, for skyline extractions from query images, which has proven to be robust to a variety of complex natural environments. On the aforementioned benchmarks, the fully automatic method is elaborated for large‐scale cross‐modal localization using panoramic skyline images. Finally, the compound index is delicately designed to reduce the storage space of the positioning global descriptors and improve the retrieval efficiency. Moreover, the proposed method is proven to outperform most state‐of‐the‐art methods.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Routing-Guided Learned Product Quantization for Graph-Based Approximate Nearest Neighbor Search;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. A Guided Tour of Post-hoc XAI Techniques in Image Segmentation;Communications in Computer and Information Science;2024

3. Accelerating Automotive Design: Harnessing AI Models for Efficient 3D Design and Development of Automobile Systems and Subsystems;2023 IEEE International Transportation Electrification Conference (ITEC-India);2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3