Low‐light image enhancement for infrared and visible image fusion

Author:

Zhou Yiqiao1,Xie Lisiqi1,He Kangjian1ORCID,Xu Dan1,Tao Dapeng1,Lin Xu2

Affiliation:

1. School of Information Science and Engineering Yunnan University Kunming P. R. China

2. Yunnan Union Vision Innovation Technology Co Ltd Kunming P. R. China

Abstract

AbstractInfrared and visible image fusion (IVIF) is an essential branch of image fusion, and enhancing the visible image of IVIF can significantly improve the fusion performance. However, many existing low‐light enhancement methods are unsuitable for the visible image enhancement of IVIF. In order to solve this problem, this paper proposes a new visible image enhancement method for IVIF. Firstly, the colour balance and contrast enhancement‐based self‐calibrated illumination estimation (CCSCE) is proposed to improve the input image's brightness, contrast, and colour information. Then, the method based on Mutually Guided Image Filtering (muGIF) is adopted to design a strategy to extract details adaptively from the original visible image, which can keep details without introducing additional noise effectively. Finally, the proposed visible image enhancement technique is used for IVIF tasks. In addition, the proposed method can be used for the visible image enhancement of IVIF and other low‐light images. Experiment results on different public datasets and IVIF demonstrate the authors’ method's superiority from both qualitative and quantitative comparisons. The authors’ code will be publicly available at https://github.com/yiqiao666/low‐light‐enhancement‐for‐IVIF/tree/master.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multi-weight fusion framework for infrared and visible image fusion;Multimedia Tools and Applications;2024-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3