A multiple gated boosting network for multi‐organ medical image segmentation

Author:

Yuan Feiniu123,Tang Zhaoda12,Wang Chunmei12,Huang Qinghua4,Shi Jinting2ORCID

Affiliation:

1. College of Information Mechanical and Electrical Engineering Shanghai Normal University Shanghai China

2. Vocational School of Teachers and Technology Jiangxi Agricultural University Nanchang Jiangxi China

3. Key Innovation Group of Digital Humanities Resource and Research Shanghai Normal University Shanghai China

4. School of Artificial Intelligence Optics and Electronics (iOPEN) Northwestern Polytechnical University Xi'an China

Abstract

AbstractSegmentations provide important clues for diagnosing diseases. U‐shaped neural networks with skip connections have become one of popular frameworks for medical image segmentation. Skip connections really reduce loss of spatial details caused by down‐sampling, but they cannot handle well semantic gaps between low‐ and high‐level features. It is quite challenging to accurately separate out long, narrow, and small organs from human bodies. To solve these problems, the authors propose a Multiple Gated Boosting Network (MGB‐Net). To boost spatial accuracy, the authors first adopt Gated Recurrent Units (GRU) to design multiple Gated Skip Connections (GSC) at different levels, which efficiently reduce the semantic gap between the shallow and deep features. The Update and Reset gates of GRUs enhance features beneficial to segmentation and suppress information adverse to final results in a recurrent way. To obtain more scale invariances, the authors propose a module of Multi‐scale Weighted Channel Attention (MWCA). The module first uses convolutions with different kernel sizes and group numbers to generate multi‐scale features, and then adopts learnable weights to emphasize the importance of each scale for capturing attention features. Blocks of Transformer Self‐Attention (TSA) are sequentially stacked to extract long‐range dependency features. To effectively fuse and boost the features of MWCA and TSA, the authors use GRUs again to propose a Gated Dual Attention module (GDA), which enhances beneficial features and suppresses adverse information in a gated learning way. Experiments show that the authors’ method achieves an average Dice coefficient of 80.66% on the Synapse multi‐organ segmentation dataset. The authors’ method outperforms the state‐of‐the‐art methods on medical images. In addition, the authors’ method achieves a Dice segmentation accuracy of 62.77% on difficult objects such as pancreas, significantly exceeding the current average accuracy, so multiple gated boosting (MGB) methods are reliably effective for improving the ability of feature representations. The authors’ code is publicly available at https://github.com/DAgalaxy/MGB‐Net.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3