Self‐supervised depth completion with multi‐view geometric constraints

Author:

Xiong Mingkang1ORCID,Zhang Zhenghong1,Liu Jiyuan1,Zhang Tao1,Xiong Huilin1

Affiliation:

1. Shanghai Key Laboratory of Intelligent Sensing and Recognition Institute for Sensing and Navigation Shanghai Jiao Tong University Shanghai China

Abstract

AbstractSelf‐supervised learning‐based depth completion is a cost‐effective way for 3D environment perception. However, it is also a challenging task because sparse depth may deactivate neural networks. In this paper, a novel Sparse‐Dense Depth Consistency Loss (SDDCL) is proposed to penalize not only the estimated depth map with sparse input points but also consecutive completed dense depth maps. Combined with the pose consistency loss, a new self‐supervised learning scheme is developed, using multi‐view geometric constraints, to achieve more accurate depth completion results. Moreover, to tackle the sparsity issue of input depth, a Quasi Dense Representations (QDR) module with triplet branches for spatial pyramid pooling is proposed to produce more dense feature maps. Extensive experimental results on VOID, NYUv2, and KITTI datasets show that the method outperforms state‐of‐the‐art self‐supervised depth completion methods.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3